Producto escalar y norma. Ortogonalización Gram-Schmidt.

En esta práctica vamos a ver cómo introducir un producto escalar y trabajar con él en Mathematica y a partir de ahí como podemos calcular una base ortogonal u ortonormal de un espacio vectorial V a partir de una base cualquiera, para ello aplicaremos el proceso de ortogonalización de Gram-Schmidt.

1. PRODUCTO ESCALAR.

Sea V espacio vectorial sobre \mathbb{R} , un producto escalar en V es una aplicación

$$<$$
, $>: V \times V \longrightarrow \mathbb{R}$

verificando las siguientes propiedades:

```
\begin{split} &1. < u,\, v> = < v,\, u>,\, \forall\,\, u,\, v\in V.\\ &2. < u+v,\, w> = < u,\, w> + < v,\, w>,\, \forall\,\, u,\, v,\, w\in V.\\ &3. < \alpha u,\, v> = \alpha < u,\, v>,\, \,\, \forall \alpha\in \mathbb{R},\, \forall\,\, u,\, v\in V.\\ &4. \,\, \forall\,\, u\in V, < u,\, u> \geq 0\,\, y\\ &5. < u,\, u> = 0 \Leftrightarrow u=0. \end{split}
```

Un **espacio vectorial euclídeo** es un par (V,<,>) formado por un espacio vectorial real V y un producto escalar definido en él.

En Mathematica seguiremos trabajando con coordenadas, es decir, de igual forma que si trabajáramos en \mathbb{R}^n . Aunque podríamos empezar distinguiendo entre el producto escalar usual y cualquier otro, lo vamos a hacer igual para todos los casos. El motivo de esta posible distinción es que el producto escalar usual en \mathbb{R}^n está definido en Mathematica escribiendo un punto entre los vectores, por ejemplo:

Ejemplo 7.1. Calculamos el producto escalar usual en \mathbb{R}^3 de los vectores v=(-1,2,3) y w=(2,-1,2):

$$In[1]: = v = \{-1,2,3\};$$

 $w = \{2,-1,2\};$
 $v.w$

Out[1]:=2

Como comentaba, nosotros lo haremos de igual forma sea el producto escalar usual o no. En Mathematica los definiremos como funciones de la forma:

Por ejemplo, si en \mathbb{R}^n queremos definir el producto escalar usual:

$$<(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n)> = x_1y_1 + x_2y_2 + \cdots + x_ny_n)$$

escribiremos:

Ejemplo 7.2. Comprobar que la función anterior también nos da el producto escalar usual en \mathbb{R}^3 de los vectores v=(-1,2,3) y w=(2,-1,2):

$$Out/27: = 2$$

(Más ejemplos en el fichero .nb)

1.1 MATRIZ DE GRAM.

Sea (V, <,>) un espacio vectorial euclídeo y sea $B=\{u_1,...,u_n\}$ una base de V. Denotamos para cada i y cada j $a_{ij}=< u_i, u_j>$. Se llama **matriz de Gram** (o **matriz métrica**) respecto de B a la matriz:

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{pmatrix}$$

Notar que la matriz de Gram es siempre simétrica, pues $a_{ij} = a_{ji}$.

Dados $x, y \in V$ de coordenadas $X = (x_1,...,x_n)_B$ e $Y = (y_1,...,y_n)_B$ se tiene

$$\langle x, y \rangle = X^t A Y$$
.

Esta fórmula recibe el nombre de **expresión matricial del producto escalar** respecto de la base B.

Con Mathematica podemos programar una función que la calcule:

Ejemplo 7.3. En \mathbb{R}^3 con el producto escalar anterior, obtener la matriz de Gram respecto de la base $B = \{(1, 1, 1), (-1, 0, 3), (0, 1, 0)\}$:

MatrixForm[Gram[{{1,1,1},{-1,0,3},{0,1,0}}, peusual]]

$$Out[3]: = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 10 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

2. NORMA Y ÁNGULO

2.1 NORMA DE UN VECTOR

Sea (V, <,>) un espacio vectorial euclídeo, se define la **norma** (o **módulo**) de un vector $u \in V$ por:

$$||\mathbf{u}|| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$$

Con Mathematica, definimos las función:

Norma[x ,p]:=
$$Sqrt[p[x,x]]$$
;

donde "x" es el vector y "p" es el producto escalar.

Un vector u se dice que es **unitario** si tiene norma 1. A partir de un vector $v \in V$, cualquiera podemos obtener uno unitario dividiendo por su norma.

Ejemplo 7.4. En \mathbb{R}^3 con el producto escalar usual, calcular la norma del vector (1, 0, 2):

$$Out[4]$$
: = $\sqrt{5}$

2.2 ÁNGULO ENTRE VECTORES

Llamaremos **ángulo** entre los vectores x e y al único número real α , $0 \le \alpha \le \pi$ de forma que:

$$\cos(\alpha) = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$$

Y con Mathematica definimos la siguiente función, que tiene por argumentos los vectores "x" e "y" y el producto escalar "p":

$$\dot{A}ngulo[x_,y_,p_] := ArcCos[p[x,y]/(Sqrt[p[x,x]]*Sqrt[p[y,y]])];$$

Sea (V, <, >) un espacio vectorial euclídeo. Se dice que los vectores $x, y \in V$ son **ortogonales**, y se denota por $x \perp y$, si < x, y > = 0 (o equivalentemente si el ángulo que forman es $\pi/2$).

Ejemplo 7.5. En \mathbb{R}^2 con el producto escalar usual, calcular el ángulo que forman los vectores (1, 1) y (0, 1):

$$In[5]:=$$
 peusual[x_,y_]:= x.y;
Ángulo[{1, 1},{0,1}, peusual]
 $Out[5]:=\frac{\pi}{4}$

Ejemplo 7.6. Sea A la matriz de Gram obtenida en el ejemplo 7.3. Define a partir de ésta el producto escalar de dos vectores. Calcular el producto escalar de los vectores que con respecto a la base B tienen como coordenadas a=(2,1,0) y b=(3,1,2) y sus normas. ¿Qué ángulo forman ambos vectores? ¿Son perpendiculares?

$$In[6]: = A=Gram[\{\{1,1,1\},\{-1,0,3\},\{0,1,0\}\},peusual] peB[x,y]:=x.A.y$$

Comprobemos que funciona calculando el producto escalar de los vectores (2,1,0,2) y (3,1,2,1) y sus normas:

$$In[7]$$
: = peB[{2,1,0},{3,1,2}]
 $Out[7]$: = 42
 $In[8]$: = Norma[x_,p_]:=Sqrt[p[x,x]];
Norma[{2,1,0},peB]
Norma[{3,1,2},peB]
 $Out[8]$: = $\sqrt{30}$

Por último, calculemos el ángulo que forman:

Observese que hemos dividido por Degree para que el resultado esté dado en grados en lugar de radianes que es la unidad usual para las razones trigonométricas en Mathematica.

3. BASES ORTOGONALES Y ORTONORMALES

Sea (V, <, >) un espacio vectorial euclídeo y $B = \{e_1,...,e_n\}$ una base de V. Diremos que B es una **base ortogonal** si los vectores que la forman son ortogonales dos a dos, esto es: $< e_i, e_j > = 0$, $\forall i \neq j$. Se dice que B es una **base ortonormal** si es ortogonal y además todos los vectores que la forman tienen norma 1, esto es: $||e_i|| = 1$, $\forall i=1,...,n$.

Teorema de Gram-Schmidt

Sea (V, <,>) un espacio vectorial euclídeo y sea $B = \{u_1,...,u_n\}$ una base de V, entonces existe una base ortogonal (resp. ortonormal) $\{e_1,...,e_n\}$ de V de forma que para cada k se verifica $L(\{u_1,...,u_k\}) = L(\{e_1,...,e_k\})$.

En este epígrafe vamos a ver cómo podemos calcular una base ortonormal de un espacio vectorial V a partir de una base cualquiera, para ello aplicaremos el proceso de ortonormalización de Gram-Schmidt. En primer lugar, lo aplicaremos a un ejemplo en el que el producto escalar es el usual y posteriormente lo haremos para un producto escalar arbitrario.

Consideremos (V, <, >) un espacio vectorial euclídeo y dada $B = \{u_1, u_2, ..., u_n\}$ una base de V, tratamos de construir una base ortogonal que representaremos por $\{e_1, e_2, ..., e_n\}$, para ello se calcula:

$$\begin{split} & e_1 = u_1, \\ & e_2 = u_2 - \frac{\langle u_2, e_1 \rangle}{\left\| e_1 \right\|^2}.e_1 \\ & \dots \\ & e_n = u_n - \frac{\langle u_n, e_1 \rangle}{\left\| e_1 \right\|^2}.e_1 - \dots - \frac{\langle u_n, e_{n-1} \rangle}{\left\| e_{n-1} \right\|^2}.e_{n-1} \end{split}$$

Y si además queremos que sea una base ortonormal, bastará con dividir cada vector por su norma.

Con Mathematica, podemos programar directamente el método de Gram-Schmidt:

 $\begin{aligned} GramSchmidt[base_, p_] := Module[\{baseortogonal\}, baseortogonal = \{base[[1]]\}; \\ Do[AppendTo[baseortogonal, base[[i+1]] - Sum[(p[base[[i+1]], baseortogonal[[j]])/p[baseortogonal[[j]], baseortogonal[[j]]) *baseortogonal[[j]], baseortogonal[[j]], baseortogonal[[j]]], base$

```
{j, i}]];
    , {i, 1, Length[base] - 1}];
Return[baseortogonal];
];
```

Ejemplo 7.7. En \mathbb{R}^3 el espacio vectorial euclídeo con el producto escalar usual y sea la base $B = \{(1,1,1), (1,-1,0), (1,0,-1)\}$, vamos a calcular la base ortogonal asociada.

Introducimos la base:

$$In/10/: = B = \{\{1,1,1\},\{1,-1,0\},\{1,0,-1\}\};$$

Primero lo hacemos con las fórmulas del método de Gram-Schimidt y teniendo en cuenta que el producto escalar usual en Mathematica viene dado con el punto (.) entre los dos vectores:

$$\label{eq:local_$$

$$Out[11] = \{\{1, 1, 1\}, \{1, -1, 0\}, \{1/2, 1/2, -1\}\}$$

Y ahora directamente con la función que hemos programado:

$$Out[12]$$
: = {{1, 1, 1}, {1, -1, 0}, {1/2, 1/2, -1}}

Observemos como la matriz de Gram respecto de la nueva base es una matriz diagonal:

$$In[13]$$
: = MatrixForm[Gram[B',peusual]]

$$Out[13]: = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{3}{2} \end{pmatrix}$$

Y ahora, la transformamos en base ortonormal:

$$In[14]$$
: = B''=Table[B'[[i]]/Sqrt[peusual[B'[[i]], B'[[i]]]], {i, Length[B']}]

$$Out[14]: = \{\{1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}\}, \{1/\sqrt{2}, -1/\sqrt{2}, 0\}, \{1/\sqrt{6}, 1/\sqrt{6}, \sqrt{2/3}\}\}$$

Y, en efecto, la matriz de Gram respecto de la nueva base es la matriz identidad:

Ejemplo 7.8. Consideremos en \mathbb{R}^4 el producto escalar cuya expresión respecto de la base canónica viene dada por :

$$<(x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)> = 2 x_1y_1 + 2 x_2y_2 + 4x_3y_3 + 2x_4y_4 + x_1y_3 + x_3y_1 + x_2y_3 + x_3y_2 + x_3y_4 + x_4y_3$$

Calcular la matriz de Gram respecto de la base canónica.

Primero introducimos el producto escalar y la base canónica:

$$In[16] := pe[x_,y_]] := 2 x[[1]] y[[1]] + 2 x[[2]] y[[2]] + 4 x[[3]] y[[3]] + 2 x[[4]] y[[4]] x[[1]] y[[3]] + x[[3]] y[[1]] + x[[2]] y[[3]] + x[[3]] y[[2]] + x[[3]] y[[4]] + x[[4]] y[[3]]$$

$$Out[17] = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$

Recordemos que $< x, y > = x^t$ A y, con A la matriz de Gram respecto de la base canónica, entonces una base ortogonal podríamos calcularla aplicando las fórmulas del método de Gram-Schmidt usando la matriz de Gram para calcular los productos escalares:

```
\label{eq:loss_selection} \begin{split} &\mathit{In[18]} := \ Bo = Table[0, \{i, 1, 4\}]; \\ &Bo[[1]] = Bc[[1]]; \\ &Bo[[2]] = Bc[[2]] - (Bc[[2]].A.Bo[[1]])/(Bo[[1]].A.Bo[[1]])*Bo[[1]]; \\ &Bo[[3]] = Bc[[3]] - (Bc[[3]].A.Bo[[1]])/(Bo[[1]].A.Bo[[1]])*Bo[[1]] - (Bc[[3]].A.Bo[[2]])/(Bo[[2]].A.Bo[[2]])*Bo[[2]]; \\ &Bo[[4]] = Bc[[4]] - (Bc[[4]].A.Bo[[1]])/ (Bo[[1]].A.Bo[[1]])*Bo[[1]] - (Bc[[4]].A.Bo[[2]])/(Bo[[2]].A.Bo[[2]])*Bo[[2]] - (Bc[[4]].A.Bo[[3]])/(Bo[[3]].A.Bo[[3]])*Bo[[3]]; \\ &Print[Bo] \end{split}
```

$$Out[18] = \{ \{1, 0, 0, 0\}, \{0, 1, 0, 0\}, \{-1/2, -1/2, 1, 0\}, \{1/6, 1/6, -1/3, 1\} \}$$

Para comprobarlo, sólo necesitamos calcular la matriz de Gram para la base anterior, si dicha matriz es diagonal, entonces Bo será una base ortogonal y si la matriz de Gram que se obtiene es la identidad, entonces Bo es una base ortonormal.

In[19]:= Gram[Bo, pe]//MatrixForm

$$Out[19] = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & \frac{5}{3} \end{pmatrix}$$

Y podemos, fácilmente, transformarla en ortonormal dividiendo cada vector por su norma:

$$In[20]:=$$
 Bn = Table[Bo[[i]]/Sqrt[pe[Bo[[i]],Bo[[i]]], {i, Length[Bo]}]

$$Out[20] = \left\{ \left\{ \frac{1}{\sqrt{2}}, 0, 0, 0 \right\}, \left\{ 0, \frac{1}{\sqrt{2}}, 0, 0 \right\}, \left\{ \frac{-1}{2\sqrt{3}}, \frac{-1}{2\sqrt{3}}, \frac{1}{\sqrt{3}}, 0 \right\}, \left\{ \frac{1}{2\sqrt{15}}, \frac{1}{2\sqrt{15}}, \frac{-1}{\sqrt{15}}, \sqrt{\frac{3}{5}} \right\} \right\}$$

Por último, comentar que Mathematica tiene un comando que nos calcula directamente la base ortonormal:

Orthogonalize[base, p]

donde p es el producto escalar que sólo tendremos que poner si no es el producto escalar usual. Como vemos en el siguiente ejemplo:

Ejemplo 7.9. Calcular, usando la orden **Orthogonalize**, las bases ortonormales asociada a las bases de los ejercicios 7.5 y 7.6 respecto de los productos escalares dados en dichos ejercicios.

$$\{\{\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\}, \{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\}, \{\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\sqrt{\frac{2}{3}}\}\}$$

$$Out[22] = \{ \{ \frac{1}{\sqrt{2}}, 0, 0, 0 \}, \{ 0, \frac{1}{\sqrt{2}}, 0, 0 \}, \{ \frac{-1}{2\sqrt{3}}, \frac{-1}{2\sqrt{3}}, \frac{1}{\sqrt{3}}, 0 \}, \{ \frac{1}{2\sqrt{15}}, \frac{1}{2\sqrt{15}}, \frac{-1}{\sqrt{15}}, \sqrt{\frac{3}{5}} \} \}$$

(Más ejemplos en el fichero .nb)